CyuacHi iHpopmaniiftHi TeXH0JI0TiI Ta iHHOBALiliHi METOAUKH HABYAHHS B

niaroroBui gaxiBuiB: MeT010J10TisI, TEOPisi, TOCBiA, MpodJIEeMHU

HAaBUYOK BUKJIQJaHHS Ta HAaBYaHHS 3 BUKOPHCTAHHSAM EJIEKTPOHHOTO KOHTEHTY. 3MiHAa HaBYaJIbHOI

napagurMy TpHU3BeNa 0 YCBIIOMIIEHHS HEOOXIIHOCTI PO3BUTKY HOBOI KYyJIbTYpH pOOOTH 3

HaBYaJILHUM MaTepiajoM, Meperisiy opraHizamiiHuX MoJIeei.

EdexTuBHe BUKOPHCTAHHS TEXHOJOTiIH CTBOPEHHS EINEKTPOHHOTO KOHTEHTY CHpPUATHME

CTBOPEHHIO BUCOKOSIKICHOTO aKaIEMIYHOT'O HABYAJILHOTO MaTepialy, OHIAH HaBYAIbHUX PECYPCIB Y
MO€HAHHI 3 PO3BUTKOM KYpCIB 3 JUCTAHIIIHOT OCBITH Ta THYYKUX PEKUMIB HABUAHHS.

Ne 30 e 2012

Jlireparypa:

1. Brockbank B. eLearning: Going Portal [Electronic resource] / Bray Brockbank // The CEO Refresher — Mode
of access: http://www.refresher.com/agoingportal.html

2. Wiley D. The Learning Objects Literature [Electronic resource] / David Wiley // Utah State University, Logan,
Utah — Mode of access: http://elearninfo247.com/2011/07/20/1656/

3. Cramer S. Update your classroom with learning objects and twenty-first century skills // The Clearing House.
—Ne. 80 (3),2007. — P. 126-132.

4. Sakurai Y., Donelson R. Using Learning Objects in English Language Instruction at a Mexican University:
Teacher Innovation and Student Responses / MEXTESOL Journal. — Ne. 35 (1), 2011. — Mode of access:
http://mextesol.net/journal/index.php?page=journal&id_article=59

5. Beck R. What Are Learning Objects? / R. Beck // Center for International Education, University of Wisconsin-
Milwaukee, 2009. — Mode of access: http://www.uwm.edu/Dept/CIE/AOP/LO_what.html

6. Schank R., Cleary C. Engines for Education // R.C. Schank, C. Cleary / Hillsdale, NJ: Lawrence Erlbaum
Associates, Publishers, 1995. — 232 P.

7. Schank R., Fano A., Jona M., Bell B. The design of goal-based scenarios // R.C. Schank, A. Fano, M. Jona,
B. Bell / Journal of Learning Sciences, — No. 3 (4), 1994. — P. 305-345.

Y emammi 30iticneno o2ns0 nioxodie 00 cmeopeHHs KOHMEHMY, BUHAUEHO POib eleKMPOHHO20 HABUATbHO20
KOHmMeHmy y po3pooyi Kypcié OUCmManyiiitHo20 HAGUAHHSL.
Knrouosi cnosa: enexmponnuii HaguaIbHULL KOHMEHM, HABUAbHULL 00 €KM, YAPAGLIHHS HAGYANLbHUM KOHMEHMOM.

B cmamve coenan 0630p nooxo008 k coz0anuio KOHMeHMa, onpeoeneHa posb HNeKMPOHHO20 YUeOH020 KOHMeHmMA
6 pazpabomie Kypcog OUCHAHYUOHHO20 0OYYeHUS.
Kntouesvle cnosa: snexmpoHnbiil yueOHblil KOHMeHm, yueOHblll 00beKm, YIPAeieHue Y4eOHbIM KOHMEHMOM.

The overview of approaches to content creation is given in the article. The role of elearning content in developing
courses of distance learning has been defined.
Keywords: eLearning content, learning object, learning content management.

VK 378:63(1-4) Oliver Ferschke, Torsten Zesch, Iryna Gurevych
Darmstadt, Germany

WIKIPEDIA REVISION TOOLKIT: EFfiCIENTLY ACCESSING
WIKIPEDIA’S EDIT HISTORY

Introduction. In the last decade, the free encyclopedia Wikipedia has become one of the most
valuable and comprehensive knowledge sources in Natural Language Processing. It has been used
for numerous NLP tasks, e.g. word sense disambiguation, semantic relatedness measures, or text
categorization. A detailed survey on usages of Wikipedia in NLP can be found in (Medelyan et al.,
2009).

The majority of Wikipedia-based NLP algorithms works on single snapshots of Wikipedia,
which are published by the Wikimedia Foundation as XML dumps at irregular intervals'. Such a
snapshot only represents the state of Wikipedia at a certain fixed point in time, while Wikipedia
actually is a dynamic resource that is constantly changed by its millions of editors. This rapid change

! http://download.wikimedia.org/

76 © Oliver Ferschke, Torsten Zesch, Iryna Gurevych, 2012

TeopeTnko-meTon0J10riuHi MPoOJIeMH MiATOTOBKH (axiBLiB y cucTeMi
HelepepBHOI 0CBITH

is bound to have an influence on the performance of NLP algorithms using Wikipedia data. However,
the exact consequences are largely unknown, as only very few papers have systematically analyzed
this influence (Zesch and Gurevych, 2010). This is mainly due to older snapshots becoming
unavailable, as there is no official backup server. As a consequence, older experimental results
cannot be reproduced anymore.

In this paper, we present a toolkit that solves both issues by reconstructing a certain past state
of Wikipedia from its edit history, which is offered by the Wikimedia Foundation in form of a
database dump. Section 3 gives a more detailed overview of the reconstruction process.

Besides reconstructing past states of Wikipedia, the revision history data also constitutes a
novel knowledge source for NLP algorithms. The sequence of article edits can be used as training
data for data-driven NLP algorithms, such as vandalism detection (Chin et al., 2010), text
summarization (Nelken and Yamangil, 2008), sentence compression (Yamangil and Nelken, 2008),
unsupervised extraction of lexical simplifications (Yatskar et al., 2010), the expansion of textual
entailment corpora (Zanzotto and Pennacchiotti, 2010), or assesing the trustworthiness of Wikipedia
articles (Zeng et al., 2006).

However, efficient access to this new resource has been limited by the immense size of the
data. The revisions for all articles in the current English Wikipedia sum up to over 5 terabytes of text.
Consequently, most of the above mentioned previous work only regarded small samples of the
available data. However, using more data usually leads to better results, or how Church and Mercer
(1993) put it «more data are better data». Thus, in Section 4, we present a tool to efficiently access
Wikipedia’s edit history. It provides an easy-to-use API for programmatically accessing the revision
data and reduces the required storage space to less than 2% of its original size. Both tools are
publicly available on Google Code (http://jwpl.googlecode.com) as open source software under the
LGPL v3.

Related Work. To our knowledge, there are currently only two alternatives to
programmatically access Wikipedia’s revision history. One possibility is to manually parse the
original XML revision dump. However, due to the huge size of these dumps, efficient, random access
is infeasible with this approach.

Another possibility is using the MediaWiki API?, a web service which directly accesses live
data from the Wikipedia website. However, using a web service entails that the desired revision for
every single article has to be requested from the service, transferred over the Internet and then stored
locally in an appropriate format. Access to all revisions of all Wikipedia articles for a large-scale
analysis is infeasible with this method because it is strongly constricted by the data transfer speed
over the Internet. Even though it is possible to bypass this bottleneck by setting up a local Wikipedia
mirror, the MediaWiki API can only provide full text revisions, which results in very large amounts
of data to be transferred.

Better suited for tasks of this kind are APIs that utilize databases for storing and accessing the
Wikipedia data. However, current database-driven Wikipedia APIs do not support access to article
revisions. That is why we decided to extend an established API with the ability to efficiently access
Wikipedia’s edit history. Two established Wikipedia APIs have been considered for this purpose.

Wikipedia Miner® (Milne and Witten, 2009) is an open source toolkit which provides access to
Wikipedia with the help of a preprocessed database. It represents articles, categories and redirects as
Java classes and provides access to the article content either as MediaWiki markup or as plain text.
The toolkit mainly focuses on Wikipedia’s structure, the contained concepts, and semantic relations,
but it makes little use of the textual content within the articles. Even though it was developed to work
language independently, it focuses mainly on the English Wikipedia.

Another open source API for accessing Wikipedia data from a preprocessed database is JWPL*
(Zesch et al., 2008). Like Wikipedia Miner, it also represents the content and structure of Wikipedia

Po3nin 1

2 http://www.mediawiki.org/wiki/API
3 http://wikipedia-miner.sourceforge.net
4 http://jwpl.googlecode.com

71

CyuacHi iHpopmaniiftHi TeXH0JI0TiI Ta iHHOBALiliHi METOAUKH HABYAHHS B

niaroroBui gaxiBuiB: MeT010J10TisI, TEOPisi, TOCBiA, MpodJIEeMHU

as Java objects. In addition to that, JWPL contains a MediaWiki markup parser to further analyze the

article contents to make available fine-grained information like e.g. article sections, info-boxes, or

first paragraphs. Furthermore, it was explicitly designed to work with all language versions of
Wikipedia.

We have chosen to extend JWPL with our revision toolkit, as it has better support for accessing
article contents, natively supports multiple languages, and seems to have a larger and more active
developer community. In the following section, we present the parts of the toolkit which reconstruct
past states of Wikipedia, while in section 4, we describe tools allowing to efficiently access
Wikipedia’s edit history.

Reconstructing Past States of Wikipedia. Access to arbitrary past states of Wikipedia is
required to (i) evaluate the performance of Wikipediabased NLP algorithms over time, and (ii) to
reproduce Wikipedia-based research results. For this reason, we have developed a tool called
TimeMachine, which addresses both of these issues by making use of the revision dump provided by
the Wikimedia Foundation. By iterating over all articles in the revision dump and extracting the
desired revision of each article, it is possible to recover the state of Wikipedia at an earlier point in
time.

Ne 30 e 2012

Table 1
Configuration of the TimeMachine
Property | Description | Example Value
language The Wikipedia language version english
mainCategory Title of the main category of the | Categories
Wikipedia language version used
disambiguationCategory Title of the disambiguation category of | Disambiguaticn
the Wikipedia language version used
fromTimestamp Timestamp of the first snapshot to be | 20090101130000
extracted
toTimestamp Timestamp of the last snapshot to be ex- | 20091231130000
tracted
each Interval between snapshots in days 30
removelnputFilesAfterProcessing | Remove source files [true/false] false
metaHistoryFile Path to the revision dump PLATH/pages-meta-history.xml.bz2
pageLinksFile Path to the page-to-page link records PATH/pagelinks.sgl.gz
categoryLinksFile Path to the category membership | PATH/categeorylinks.sgl.gz
records
outputDirectory Output directory PATH/cutdir/

The TimeMachine is controlled by a single configuration file, which allows (i) to restore
individual Wikipedia snapshots or (ii) to generate whole snapshot series. Table 1 gives an overview
of the configuration parameters. The first three properties set the environment for the specific
language version of Wikipedia. The two timestamps define the start and end time of the snapshot
series, while the interval between the snapshots in the series is set by the parameter each. In the
example, the TimeMachine recovers 13 snapshots between Jan 01, 2009 at 01.00 p.m and and Dec
31, 2009 at 01.00 p.m at an interval of 30 days. In order to recover a single snapshot, the two
timestamps have simply to be set to the same value, while the parameter ‘each’ has no effect. The
option removelnputFilesAfterProcessing specifies whether to delete the source files after processing
has finished. The final four properties define the paths to the source files and the output directory.

The output of the TimeMachine is a set of eleven text files for each snapshot, which can
directly be imported into an empty JWPL database. It can be accessed with the JWPL API in the
same way as snapshots created using JWPL itself.

Issue of Deleted Articles. The past snapshot of Wikipedia created by our toolkit is identical to
the state of Wikipedia at that time with the exception of articles that have been deleted meanwhile.
Articles might be deleted only by Wikipedia administrators if they are subject to copyright
violations, vandalism, spam or other conditions that violate Wikipedia policies. As a consequence,
they are removed from the public view along with all their revision information, which makes it

78

TeopeTnko-meTon0J10riuHi MPoOJIeMH MiATOTOBKH (axiBLiB y cucTeMi
HelepepBHOI 0CBITH

impossible to recover them from any future publicly available dump’. Even though about five
thousand pages are deleted every day, only a small percentage of those pages actually corresponds to
meaningful articles. Most of the affected pages are newly created duplicates of already existing
articles or spam articles.

Efficient Access to Revisions. Even though article revisions are available from the official
Wikipedia revision dumps, accessing this information on a large scale is still a difficult task.

This is due to two main problems. First, the revision dump contains all revisions as full text.
This results in a massive amount of data and makes structured access very hard. Second, there is no
efficient API available so far for accessing article revisions on a large scale.

Thus, we have developed a tool called RevisionMachine, which solves these issues. First, we
describe our solution to the storage problem. Second, we present several use cases of the
RevisionMachine, and show how the API simplifies experimental setups.

Revision Storage. As each revision of a Wikipedia article stores the full article text, the
revision history obviously contains a lot of redundant data. The RevisionMachine makes use of this
fact and utilizes a dedicated storage format which stores a revision only by means of the changes that
have been made to the previous revision. For this purpose, we have tested existing diff libraries, like
Javaxdelta® or java-diff’, which calculate the differences between two texts. However, both their
runtime and the size of the resulting output was not feasible for the given size of the data. Therefore,
we have developed our own diff algorithm, which is based on a longest common substring search
and constitutes the foundation for our revision storage format.

The processing of two subsequent revisions can be divided into four steps:

— First, the RevisionMachine searches for all common substrings with a user-defined minimal
length.

— Then, the revisions are divided into blocks of equal length. Corresponding blocks of both
revisions are then compared. If a block is contained in one of the common substrings, it can be
marked as unchanged. Otherwise, we have to categorize the kind of change that occurred in this
block. We differentiate between five possible actions: Insert, Delete, Replace, Cut and Paste®. This
information is stored in each block and is later on used to encode the revision.

— In the next step, the current revision is represented by means of a sequence of actions
performed on the previous revision.

For example, in the adjacent revision pair

rl : This is the very first sentence!

r2 : This is the second sentence

r2 can be encoded as

REPLACE 12 10 ’second’

DELETE 31 1

— Finally, the string representation of this action sequence is compressed and stored in the
database.

With this approach, we achieve to reduce the demand for disk space for a recent English
Wikipedia dump containing all article revisions from 5470 GB to only 96 GB, i.e. by 98%. The
compressed data is stored in a MySQL database, which provides sophisticated indexing mechanisms
for high-performance access to the data.

Obviously, storing only the changes instead of the full text of each revision trades in speed for
space. Accessing a certain revision now requires reconstructing the text of the revision from a list of
changes. As articles often have several thousand revisions, this might take too long. Thus, in order to
speed up the recovery of the revision text, every n-th revision is stored as a full revision. A low value

Po3nin 1

5 http://en.wikipedia.org/wiki/Wikipedia:DEL

® http://javaxdelta.sourceforge.net/

7 http://www.incava.org/projects/java/java-diff

8 Cut and Paste operations always occur pairwise. In addition to the other operations, they can make use of an additional
temporary storage register to save the text that is being moved.

79

CyuacHi iHpopmaniiftHi TeXH0JI0TiI Ta iHHOBALiliHi METOAUKH HABYAHHS B

niaroroBui gaxiBuiB: MeT010J10TisI, TEOPisi, TOCBiA, MpodJIEeMHU

of n decreases the time needed to access a certain revision, but increases the demand for storage

space. We have found n = 1000 to yield a good trade-off’. This parameter, among a few other

possibilities to fine-tune the process, can be set in a graphical user interface provided with the
RevisionMachine.

Revision Access. After the converted revisions have been stored in the revision database, it can
either be used standalone or combined with the JWPL data and accessed via the standard JWPL API.
The latter option makes it possible to combine the possibilities of the RevisionMachine with other
components like the JWPL parser for the MediaWiki syntax.

In order to set up the RevisionMachine, it is only necessary to provide the configuration details
for the database connection (see Listing 1). Upon first access, the database user has to have write
permission on the database, as indexes have to be created. For later use, read permission is sufficient.
Access to the RevisionMachine is achieved via two API objects. The Revisionlterator allows to
iterate over all revisions in Wikipedia. The RevisionAPI grants access to the revisions of individual
articles. In addition to

Setupdatabaseconnection

DatabaseConfiguration db = new DatabaseConfiguration () ;

db . setDatabase («dbnamey),;

db . setHost (« h o s tn amey),

db . setUser (« u s er n amey);

db . setPassword («pwdp),;

db . setLanguage (Language . english);

//CreateAPlobjects

Wikipedia wiki = WikiConnectionUtils . getWikipediaConnection (db) ;

Revisionlterator revlt = new Revisionlterator (db) ;

RevisionApi revApi = new RevisionApi (db) ;

Listing 1: Setting up the RevisionMachine

that, the Wikipedia object provides access to JWPL functionalities.

In the following, we describe three use cases of the RevisionMachine API, which demonstrate
how it is easily integrated into experimental setups.

Processing all article revisions in Wikipedia. The first use case focuses on the utilization of
the complete set of article revisions in a Wikipedia snapshot. Listing 2 shows how to iterate over all
revisions. Thereby, the iterator ensures that successive revisions always correspond to adjacent
revisions of a single article in chronological order. The start of a new article can easily be detected by
checking the timestamp and the article id. This approach is especially useful for applications in
statistical natural language processing, where large amounts of training data are a vital asset.

Processing revisions of individual articles. The second use case shows how the
RevisionMachine can be used to access the edit history of a specific article. The example in Listing 3
illustrates how all revisions for the article Automobile can be retrieved by first performing a page
query with the JWPL API and then retrieving all revision timestamps for this page, which can finally
be used to access the revision objects.

Accessing the meta data of a revision. The third use case illustrates the access to the meta
data of individual revisions. The meta data includes the name or IP of the contributor, the additional
user comment for the revision and a flag that identifies a revision as minor or major. Listing 4 shows
how the number of edits and unique contributors can be used to indicate the level of edit activity for
an article.

Conclusions. In this paper, we presented an open-source toolkit which extends JWPL, an API
for accessing Wikipedia, with the ability to reconstruct past states of Wikipedia, and to efficiently
access the edit history of Wikipedia articles.

Ne 30 e 2012

° If hard disk space is no limiting factor, the parameter can be set to 1 to avoid the compression of the revisions and

maximize the performance.

80

TeopeTnko-meTon0J10riuHi MPoOJIeMH MiATOTOBKH (axiBLiB y cucTeMi
HelepepBHOI 0CBITH

Reconstructing past states of Wikipedia is a prerequisite for reproducing previous experimental
work based on Wikipedia, and is also a requirement for the creation of time-based series of
Wikipedia snapshots and for assessing the influence of Wikipedia growth on NLP algorithms.
Furthermore, Wikipedia’s edit history has been shown to be a valuable knowledge source for NLP,
which is hard to access because of the lack of efficient tools for managing the huge amount of
revision data. By utilizing a dedicated storage format for the revisions, our toolkit massively
decreases the amount of data to be stored. At the same time, it provides an easyto-use interface to
access the revision data.

We expect this work to consolidate NLP research using Wikipedia in general, and to foster
research making use of the knowledge encoded in Wikipedia’s edit history. The toolkit will be made
available as part of JWPL, and can be obtained from

the project’s website at Google Code. (http://jwpl.googlecode.com)

Acknowledgments. This work has been supported by the Volkswagen Foundation as part of
the Lichtenberg-Professorship Program under grant No. [/82806, and by the Hessian research
excellence program «Landes-Offensive zur Entwicklung Wissenschaftlich- “okonomischer
Exzellenz» (LOEWE) as part of the research center «Digital Humanities». We would also like to
thank Simon Kulessa for designing and implementing the foundations of the RevisionMachine.

/llterateoverallrevisionsofallarticles

while (revit. hasNext ()) {

Revision rev = revlt . next ()

rev. getTimestamp () ;

rev . getArticlelD () ;

//processrevision...

{

Listing 2: Iteration over all revisions of all articles

Po3nin 1

//Getarticlewithtitle« Automo b ile «

Page article = wiki . getPage (« Automo bile «) ;

intid = article . getPageld () ;

//Getallrevisionsforthearticle

Collection<Timestamp> revisionTimeStamps = revApi . getRevisionTimestamps (id) ;

for (Timestamp t : revisionTimeStamps) {

Revision rev = revApi . getRevision (id , t)

//processrevision. ..

{

Listing 3: Accessing the revisions of a specific article

//MetadataprovidedbytheRevision AP I

StringBuffer s = new StringBuffer () ;

s.append (« Thearticlehas «+revApi . getNumberOfRevisions (pageld) +» revisio
ns.\n«);

s.append (« It has «+revApi . getNumberOfUniqueContributors (pageld) +» uniqueco
ntributors.\n«);

s . append (revApi . getNumberOfUniqueContributors (pageld , true) + «areregister
edusers.\n«);

//MetadataprovidedbytheRevisionobject

s . append ((rev . isMinor () ? « Minor « : « Major «) +» revisionby: «trev.
getContributorID ()) ;

s . append (« \nComment : «+rev. getComment ()) ;

Listing 4: Accessing the meta data of a revision

81

CyuacHi iHpopmaniiftHi TeXH0JI0TiI Ta iHHOBALiliHi METOAUKH HABYAHHS B
niaroroBui gaxiBuiB: MeT010J10TisI, TEOPisi, TOCBiA, MpodJIEeMHU
References:

Ne 30 e 2012

1. Si-Chi Chin, W. Nick Street, Padmini Srinivasan, and David Eichmann. 2010. Detecting wikipedia vandalism
with active learning and statistical language models. In Proceedings of the 4th workshop on Information credibility,
WICOW ’10, pages 3-10.

2. Kenneth W. Church and Robert L. Mercer. 1993. Introduction to the special issue on computational linguistics
using large corpora. Computational Linguistics, 19(1):1-24.

3. Olena Medelyan, David Milne, Catherine Legg, and Ian H. Witten. 2009. Mining meaning from wikipedia. Int.
J. Hum.-Comput. Stud., 67:716-754, September.

4. D. Milne and I. H. Witten. 2009. An open-source toolkit for mining Wikipedia. In Proc. New Zealand
Computer Science Research Student Conf., volume 9.

5. Rani Nelken and Elif Yamangil. 2008. Mining wikipedia’s article revision history for training computational
linguistics algorithms. In Proceedings of the AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving
Synergy (WikiAl), WikiAIOS.

6. Elif Yamangil and Rani Nelken. 2008. Mining wikipedia revision histories for improving sentence
compression. In Proceedings of ACL-08: HLT, Short Papers, pages 137-140, Columbus, Ohio, June. Association for
Computational Linguistics.

7. Mark Yatskar, Bo Pang, Cristian Danescu-NiculescuMizil, and Lillian Lee. 2010. For the sake of simplicity:
unsupervised extraction of lexical simplifications from wikipedia. In Human Language Technologies:The 2010 Annual
Conference of the North American Chapter of the Association for Computational Linguistics, HLT 10, pages 365—368.

8. Fabio Massimo Zanzotto and Marco Pennacchiotti. 2010. Expanding textual entailment corpora from
wikipedia using co-training. In Proceedings of the COLING-Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources.

9. Honglei Zeng, Maher Alhossaini, Li Ding, Richard Fikes, and Deborah L. McGuinness. 2006. Computing trust
from revision history. In Proceedings of the 2006 International Conference on Privacy, Security and Trust.

10. Torsten Zesch and Iryna Gurevych. 2010. The more the better? Assessing the influence of wikipedia’s growth
on semantic relatedness measures. In Proceedings of the Conference on Language Resources and Evaluation (LREC),
Valletta, Malta.

11. Torsten Zesch, Christof Mueller, and Iryna Gurevych. 2008. Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary. In Proceedings of the Conference on Language Resources and Evaluation (LREC).

We present an open-source toolkit whichallows (i) to reconstruct past states of Wikipedia, and (ii) to efficiently
access theedit history of Wikipedia articles. Reconstructing past states of Wikipedia is a prerequisite for reproducing
previous experimental work based on Wikipedia. Beyond that,the edit history of Wikipedia articles has been shown to be
a valuable knowledge source for NLP, but access is severely impeded by the lack of efficient tools for managing the huge
amount of provided data. By using a dedicated storage format, our toolkit massively decreases the data volume to less
than 2% of the original size, and at the same time provides an easy-to-use interface to access the revision data. The
language-independent design allows to process any language represented in Wikipedia. We expect this work to
consolidate NLP research using Wikipedia in general, and to foster research making use of the knowledge encoded in
Wikipedia’s edit history.

YK 378 L1. Yyumiii
M. YMaHb, YKpaiHa

MIATOTOBKA ®AXIBIIB ATPAPHOI'O IPO®LIIO B CUCTEMI BUIIIOI OCBITH:
3APYBI)KHHUM JIOCBIJI

AKTyaJIbHiCTh JOCHiIzKeHHsl. PO3BUTOK arpapHoOi OCBITH 1 HayKH € Ba)XKJIMBOIO JIAHKOI B
CHCTEMI 1HHOBALIHHOIO PO3BUTKY arponpOMHCIOBOTO CEKTOPY EKOHOMIKM. ArpapHa OCBITa €
JOKEpPEJIOM TIOMTOBHEHHSI KaJIPiB CUTECHKOTOCIIONAPCHKOT Talry3i Ta 3a0e3evye HaceICHHs, 3aliHATE B
arporpoMHUCIOBOMY BUPOOHHMITBI, CyYaCHUMH 3HAHHSAMH, HEOOXIIHUMHM [UIi EKOHOMIYHOTO
PO3BUTKY arpapHOTO CEKTOPY CKOHOMIKH Oynb-sfKoi KpaiHuw. SIKicHa peaizaifisi MPUHITUIIB
YIOCKOHAJIEHHS BUILOi OCBITH, aAanTallis ii 10 CyCHiJbCTBa, 110 MOCTIHHO 3MIHIOETHCS, 103BOJIUTh
HiHATUCS Ha piBEHb YCBIIOMJIGHHS HOBHX, HEOOXiIHUX CyYacHIld IIOJWHI 3HaHb Ta YMiHb 1
HAJIe)KHUM YUHOM OLIHUTH HOBY 1H(QOPMAIIITHO-TEXHOJIOTIUHY €py.

82 © LL Yyumiii, 2012

