Vol. 1 No. 2 (2024)
Actual problems of physics and astronomy

Methods of low-energy induced fluorescence and spectrophotometry for the study of blood cells

Victoria Dumenko
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
Bio

Published 2024-10-17

Keywords

  • fluorescence, fluorescent probe, low-energy induced fluorescence microscopy, spectrophotometry, blood samples, myeloid leukemia

How to Cite

Methods of low-energy induced fluorescence and spectrophotometry for the study of blood cells. (2024). Mathematics, Informatics, Physics: Science and Education, 1(2), 129-137. https://doi.org/10.31652/3041-1955/2024-01-02-04

Abstract

The article describes the implementation of the method of low-energy induced fluorescence microscopy using a laser with a wavelength of 635 nm as a source of radiation and the spectrophotometry method for analyzing the absorption spectra of fluorescent probes. The results of theoretical and experimental studies of blood cells of healthy people and chronic myelogenous leukemia by fluorescence microscopy are presented.

Downloads

Download data is not yet available.

References

  1. Павлов С. В., Кожем'яко В. П., Колесник П. Ф., Козловська Т. І., Думенко В. П. Фізичні основи біомедичної оптики. Вінниця: ВНТУ, 2010. 150 с.
  2. Wentrup R., Winkelmann N., Mitroshkin А., et. al. Photodynamic therapy plus chemotherapy compared with photodynamic therapy alone in hilar nonreselectable cholangiocarcinome. Gut Liver. 2016. Vol 10 (3). Р. 470-475. DOI: https://doi.org/10.5009/gnl15175
  3. Kozlovska T. I., Sander S. V., Zlepko S. M., Vasilenko V. B., Pavlov V. S., Klapouschak A. Yu., Dumenko V. P., Maciejewski M., Dzierżak R., Surtel W. Device to determine the level of peripheral blood circulation and saturation. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. - International Society for Optics and Photonics. 2016. 100312Z-100312Z-6
  4. Abugo O. O., Herman P., Lakowicz J. R. Fluorescence properties of albumin blue 633 and 670 in plasma and whole blood. J. Biomed. Opt. 2001. Vol. 6, № 3. Р. 359-365. DOI: https://doi.org/10.1117/1.1381053
  5. Suhling K., Siegel J., Phillips D., French P. M., Leveque-Fort S., D Webb S. E., Davis D. M. Imaging the environment of green fluorescent protein. Biophys. J. 2002. Vol. 83. Р. 3589-3595. DOI: https://doi.org/10.1016/S0006-3495(02)75359-9
  6. Gannot I., Garashi A., Gannot G., Chernomordik V., Gandjbakhche A. In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers. Appl. Opt. 2003. Vol. 42 (16). Р. 3073-3080. DOI: https://doi.org/10.1364/AO.42.003073
  7. Думенко В. П. Сучасні лазерні люмінесцентні методи дослідження злоякісних новоутворень в біологічних тканинах. Сучасні проблеми фізико-математичної освіти і науки: збірник матеріалів конференції (Київ, 25-26 травня 2017 року). Київ: НПУ ім. М. П. Драгоманова. С. 27-28.
  8. Soukos N. S., Som S., Abernethy A. D., Ruggiero K., Lee J. , Dunham C., Doukas A. G., Goodson J. M., Phototargeting oral black-pigmented bacteria. Antimicrob. Agents Chemother. 2005. Vol. 49. Р. 1391-1396. DOI: https://doi.org/10.1128/AAC.49.4.1391-1396.2005
  9. Schneckenburger H., König K., Dienersberger T., Hahn R. Time-gated microscopic imaging and spectroscopy in medical diagnosis and photobiology. Opt. Eng. 1994. Vol. 33. Р. 3156-3167. DOI: https://doi.org/10.1117/12.177101