Vol. 2 No. 1 (2025)
Actual problems of physics and astronomy

Study of the effect of low-intensity laser radiation on the rheological properties of blood

Victoria Dumenko
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
Bio

Published 2025-05-21

Keywords

  • laser radiation, aggregation, erythrocytes, blood rheology, optical microscopy.

How to Cite

Study of the effect of low-intensity laser radiation on the rheological properties of blood. (2025). Mathematics, Informatics, Physics: Science and Education, 2(1), 52-62. https://doi.org/10.31652/3041-1955-2025-02-01-11

Abstract

The physical mechanisms of the influence of laser radiation on the rheological properties of blood and processes in blood rheology and hemodynamics are substantiated and the results of studies of changes in the rheological properties of erythrocytes in myeloma disease are presented, namely, the determination of changes in the length of erythrocyte chains and changes in the percentage value of the number of pathological forms of erythrocytes under the influence of laser radiation by the method of optical digital microscopy with the use of software. The therapeutic effect of laser radiation on the rheological properties of blood in myeloma was revealed, depending on the time and power of the laser source.

 

 

Downloads

Download data is not yet available.

References

  1. Siposan D. G, Lukacs A. Effect of low-level laser radiation on some rheological factors in human blood: an in vitro study. J. Clin Laser Med Surg. 2000. Vol 18 (4). Р. 185–195. DOI: https://doi.org/10.1089/10445470050144038
  2. Mi X. Q., Chen J. Y., Cen Y., Liang Z. J., Zhou L.W. A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro. Photochem Photobiol. 2000. Vol 74 (1). Р. 7–12. DOI: https://doi.org/10.1016/j.jphotobiol.2004.01.003
  3. Walski T., Drohomirecka A., Bujok J., et al. Low-Level Light Therapy Protects Red Blood Cells Against Oxidative Stress and Hemolysis During Extracorporeal Circulation. Frontiers in Physiology. 2018. Vol 9:647. DOI: https://doi.org/10.3389/fphys.2018.00647
  4. Wang H., Liu W., Fang X., et al. Effect of 405 nm low intensity irradiation on the absorption spectrum of in-vitro hyperlipidemia blood. Technology and Health Care. 2018. Vol 26. Р. 135–143. DOI: https://doi.org/10.3233/thc-174302
  5. Benevento E. M., Lisboa F. S. S., Kaneko L. d. O. et al. Transcutaneous intravascular laser irradiation of blood affects plasma metabolites of women. Sci Rep. 14, 29839. 2024. DOI: https://doi.org/10.1038/s41598-024-80169-9
  6. Kozlovska T. I., Sander S. V., Zlepko S. M., Vasilenko V. B., Pavlov V. S., Klapouschak A. Yu., Dumenko V. P., Maciejewski M., Dzierżak R., Surtel W. Device to determine the level of peripheral blood circulation and saturation. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. - International Society for Optics and Photonics. 2016. Vol. 100312Z. DOI: https://doi.org/10.1117/12.2249131
  7. Думенко В.П. Методи низькоенергетичної індукованої флуоресценції та спектрофотометрії для дослідження клітин крові. Математика, інформатика, фізика: наука та освіта. 2024. 1(2). С. 129-137. https://doi.org/10.31652/3041-1955/2024-01-02-04
  8. Павлов С. В., Кожем’яко В. П., Колесник П. Ф., Козловська Т. І., Думенко В. П. Фізичні основи біомедичної оптики. Вінниця: ВНТУ, 2010. 150 с.