Vol. 1 No. 2 (2024)
Actual problems of mathematics

A class of Galilean invariant systems of ordinary differential equations of the second order

Oleksandr Tymoshenko
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
Bio
Ivanna Leonova
Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
Bio

Published 2024-10-17

Keywords

  • Lie algebra, Galilean algebra, invariant systems, differential equations

How to Cite

A class of Galilean invariant systems of ordinary differential equations of the second order. (2024). Mathematics, Informatics, Physics: Science and Education, 1(2), 111-119. https://doi.org/10.31652/3041-1955/2024-01-02-02

Abstract

The article is devoted to the construction of a class of Galilean invariant systems of ordinary differential equations of the second order. For this, a symmetric analysis of the Newton-Lorentz equation was used, and based on the invariance of this equation, a class of systems of differential equations was constructed, a partial case of which is the Newton-Lorentz equation, which is invariant with respect to the Galilean algebra.

Downloads

Download data is not yet available.

References

  1. Cheeger J., Ebin D. G.. Comparison Theorems in Riemannian Geometry. Providence: AMS, 2008. 161 p. URL: https://www.ams.org/books/chel/365/chel365-endmatter.pdf
  2. Eberlein P. B. Left invariant geometry of Lie groups. Cubo. 2004. Vol. 6, No. 1. P. 427-510.
  3. Ivanova N. M. On Lie symmetries of a class of reaction-diffusion equations. Proc. of the 4th Intern. Workshop “Group Analysis of Differential Equations and Integrable Systems”. Nicosia: University of Cyprus, 2009. P. 84-86.
  4. Lie S. Theorie der Transformationsgruppen. Math. Ann. 1880. Vol. 16. P. 441-528. URL: https://eudml.org/doc/156896
  5. Bertram W. Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings. Memoirs of the American Mathematical Society. Providence: AMS, 2008. 211 р. URL: https://hal.science/hal-00004190v2
  6. Лагно В. І., Спічак С. В., Стогній В. І. Симетрійний аналіз рівнянь еволюційного типу. Київ: Ін-т математики НАН України, 2002. 360 с.
  7. Сєров М., Карпалюк Т. Iнварiантнiсть системи рiвнянь конвекцiї дифузiї вiдносно узагальненої алгебри Галiлея у випадку тривимiрного векторного поля. Математичний вісник Наукового товариства ім. Шевченка. 2010. Т. 7. С. 267-288. URL: http://nbuv.gov.ua/UJRN/Mvntsh_2010_7_19