Vol. 1 No. 1 (2024)
Actual problems of mathematics

On stochastic space-time Paley-Wiener-Zygmund integral

Oleh Buhrii
Lviv University
Bio
Nataliya Buhrii
Lviv Polytechnic National University
Bio
Vitaliy Vlasov
Lviv University
Bio

Published 2024-10-17

Keywords

  • stochastic integral, Paley-Wiener-Zygmund integral, random Winer process

How to Cite

On stochastic space-time Paley-Wiener-Zygmund integral. (2024). Mathematics, Informatics, Physics: Science and Education, 1(1), 13-26. https://doi.org/10.31652/3041-1955-2024-01-02

Abstract

We consider one case of the stochastic integral of non-random function of many variables with respect to the random Winer process. We give definition of this integral and prove some it standard properties.

Downloads

Download data is not yet available.

References

  1. Evans L. C. An introduction to Stochastic differential equations. Lecture Notes (VERSION 1.2). 2012. Department of Math., UC Berkeley. 139 p.
  2. Paley R., Wiener N., Zygmund A. Notes on random functions. Mathematische Zeitschrift. 1933. Vol. 37, № 1. P. 647-668. https://doi.org/10.1007/BF01474606
  3. Applebaum D. Levy processes and stochastic calculus. Cambridge: Cambridge University Press, 2009. 460 p. https://doi.org/10.1017/CBO9780511809781
  4. Brezis H. Functional Analysis. Sobolev Spaces and Partial Differential Equations. New York, Dordrecht, Heidelberg, London: Springer, 2011. 599 p. https://doi.org/10.1007/978-0-387-70914-7
  5. Leoni G. A first course in Sobolev spaces. Providence: American Mathematical Soc., 2017. 736 p. https://doi.org/10.1090/gsm/181
  6. Гнєденко Б. В. Курс теорії ймовірностей. Київ: Видавничо-поліграфічний центр "Київський університет", 2010. 464 c.
  7. Скороход А. В. Лекції з теорії випадкових процесів. Київ: Либідь, 1990. 168 c.