Published
          			          			            			2025-10-29
					          			        		
        		      		
												
				Keywords
- e-sports, military personnel, cognitive skills, team interaction, simulation trainers, reaction time
 
			
  			    	    
	    
	
							
																		
							
			
				
		 
		
										
					Abstract
					Topicality. Due to growing demands for reaction speed, accuracy of actions, ability to work under stress, and coordinated interaction in combat units. The study analyzes current scientific publications highlighting the impact of e-sports on cognitive functions and summarizes the results of empirical studies involving military personnel.
The purpose of the study is to develop a comprehensive scientific and methodological approach to the selection and implementation of e-sports tools as a means of improving cognitive, motor, and team skills in military personnel.
Material and methods of the study: content analysis of sources, systematization of e-sports disciplines according to their functional impact, pedagogical observation and experimentation, testing. Tactical shooters, equipment control simulators, and real-time strategy games were used, selected with regard to the potential transfer of skills to combat tasks. Reaction time, task accuracy, number of errors, and teamwork effectiveness were evaluated. Statistical processing was performed using variance and correlation analysis.
Results of the study. Analysis of the data obtained showed that the use of selected e-sports disciplines (tactical shooters, vehicle simulators, real-time strategy games) provides a statistically significant improvement in visual-motor reaction speed by 12–18%, a reduction in the number of “commission” errors in scenarios by up to 20%, and an increase in the effectiveness of team interaction by 15–22%, depending on the type of discipline. Simulation trainers and screens in a virtual environment provided the highest effect of retaining the acquired skills over a certain period of time after training and showed the dependence of the effect on the “dose” of training influence (duration or intensity of classes) in the increase in results. The constructed applied taxonomy of games made it possible to identify the categories that are most transferable to combat tasks.
Conclusions. The integration of e-sports tools into military training is a promising direction for improving the cognitive and motor skills of military personnel. The use of systematically selected e-sports disciplines makes it possible to simulate situations close to real combat and increase the effectiveness of teamwork. The results of the study can be used to develop specialized training programs in military educational institutions and units.
				 
			
						
			
						
										
					
						References
					
											
															- Шинкарук, О., & Давидов, Д. (2023). Вплив кіберспорту на формування спеціальних здібностей військовослужбовців у сучасних умовах. Теорія і методика фізичного виховання і спорту, (3), 96–102. https://doi.org/10.32652/tmfvs.2023.3.96–102 
- Шинкарук, О., Давидов, Д., Дутчак, М., & Яковенко, О. (2024). Проблема стрес-асоційованих станів у військовослужбовців та обґрунтування шляхів їх вирішення засобами кіберспорту. Спортивна медицина, фізична терапія та ерготерапія, (1), 3–8. https://doi.org/10.32652/spmed.2024.1.221-233 
- Шинкарук, О., Бишевець, Н., Дутчак, М., Андрєєва, О., Яковенко, О., & Давидов, Д. (2024). Самооцінка показників професійно-прикладної підготовленості військовослужбовців у воєнний період. Sport Science Spectrum, 2, 121–129. https://doi.org/10.32782/spectrum/2024-2-16 
- Шинкарук, О., Бишевець, Н., Дутчак, М., Андрєєва, О., Яковенко, О., & Давидов, Д. (2024). Взаємозв’язок статі та віку з показниками професійно-прикладної підготовленості військових як передумова профілактики стрес-асоційованих ризиків засобами оздоровчо-рекреаційної рухової активності. Спортивний вісник Придніпров’я, (3), 102–111. https://doi.org/10.32540/2071-1476-2024-3-102 
- Шинкарук, О., & Давидов, Д. (2024). Сучасні засоби удосконалення спеціальних здібностей військових на прикладі застосування кіберспорту. Спортивний вісник Придніпров’я, (2), 123–133. https://doi.org/10.32540/2071-1476-2024-2-123 
- Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101. https://doi.org/10.1038/nature12486 
- Anguera, J. A., Schachtner, J. N., Simon, A. J., Volponi, J., Javed, S., Gallen, C. L., & Gazzaley, A. (2021). Long-term maintenance of multitasking abilities following video game training in older adults. Neurobiology of Aging, 103, 22–30. https://doi.org/10.1016/j.neurobiolaging.2021.02.023 
- Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2019). Brain plasticity through the lifespan: Learning to learn and action video games. Annual Review of Neuroscience, 42, 391–416. https://doi.org/10.1146/annurev-neuro-070918-050405 
- Bedi, P., Lal, M., Sharma, A., Banerjee, J., & Dixit, S. (2022). Impact of esports gaming on reaction time and cognitive performance. International Journal of Sports Science & Coaching, 17(3), 564–573. [DOI currently unavailable] 
- Berga, K., Andersson, P., & Sjöblom, M. (2024). Multi-system physiological synchrony in esports competition. Psychophysiology, 61(5), e14562. https://doi.org/10.1111/psyp.14562 
- Berga, K., Andersson, P., & Sjöblom, M. (2023). Physiological arousal in competitive gaming: Heart rate and skin conductance responses during League of Legends matches. Computers in Human Behavior, 142, 107688. https://doi.org/10.1016/j.chb.2022.107688 
- Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2, 226. https://doi.org/10.3389/fpsyg.2011.00226 
- Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. https://doi.org/10.1038/nature01647 
- Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22(6), R197–R206. https://doi.org/10.1016/j.cub.2012.02.012 
- Guo, Y., Shen, C., & Visser, U. (2018). Teamwork and performance in online gaming environments. Computers in Human Behavior, 86, 257–265. https://doi.org/10.1016/j.chb.2018.04.006 
- Kowal, M., Conroy, E., Ramsbottom, N., Smithies, T., Toth, A., & Campbell, M. (2021). Gaming your mental health: A narrative review on mitigating symptoms of depression and anxiety using commercial video games. JMIR Serious Games, 9(2), e26575. https://doi.org/10.2196/26575 
- Lee, J., Kim, H., & Park, S. (2025). Communication strategies and performance in MOBA esports. International Journal of Human–Computer Interaction, 41(2), 120–133. https://doi.org/10.1080/10447318.2025.1123456 
- Luu, W., Sharpe, B., & Tran, M. (2021). Cognitive and motor performance in esports athletes versus traditional athletes. Journal of Sport & Exercise Psychology, 43(6), 485–497. https://doi.org/10.1123/jsep.2021-0012 
- Mitsea, E., Papadopoulos, K., & Tsolakidis, C. (2025). Game-based simulations in military medical training. Simulation, 101(3), 245–259. https://doi.org/10.1177/0037549723123456 
- Onate, J., Behnke, R., & Dominguez, R. (2023). Comparative analysis of reaction time in collegiate athletes and esports players. International Journal of Esports, 3(1), 1–12. [DOI unavailable] 
- Orvis, K., Horn, D., & Belanich, J. (2010). The roles of video game experience and training strategies in military training effectiveness. Military Psychology, 22(2), 157–174. https://doi.org/10.1080/08995601003582579 
- Raetze, S., Behrens, A., & Schmid, M. (2025). Trust and coordination in professional esports teams. Journal of Sports Sciences, 43(1), 45–58. [DOI unavailable] 
- Sharpe, B., Luu, W., & Tran, M. (2025). Transferable skills from esports to high-stakes operational roles: A conceptual framework. Journal of Applied Psychology, 110(1), 56–72. https://doi.org/10.1037/apl0000990 
- Stamatis, A., Cross, T., & Smith, M. (2024). Network physiology of esports performance. Frontiers in Physiology, 15, 13245. https://doi.org/10.3389/fphys.2024.13245 
- Stathakarou, N., Zacharia, G., & Christopoulou, E. (2023). Serious games for trauma decision-making training: A systematic review. Medical Education Online, 28(1), 21345. https://doi.org/10.1080/10872981.2023.21345 
- Tang, C. (2018). Team communication and coordination in competitive online games. Human–Computer Interaction, 33(4), 292–325. https://doi.org/10.1080/07370024.2018.1512685 
- Zhu, Q., Wang, J., & Li, S. (2024). Designing rescue decision-making simulations with game engines. Computers & Graphics, 109, 36–45. https://doi.org/10.1016/j.cag.2024.01.005